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Abstract Geospatial data sciences have emerged as

critical requirements for high-priority application

solutions in diverse areas, including, but not limited

to, the mitigation of natural and man-made disasters.

Three sets of metrics, adopted or customized from geo-

statistics, applied meteorology and signal processing,

are tested in terms of their ability to evaluate geospatial

datasets, specifically two population databases com-

monly used for disaster preparedness and consequence

management. The two high-resolution, grid-based

population datasets are the following: The LandScan

dataset available from the Geographic Information

Science and Technology (GIST) group at the Oak

Ridge National Laboratory (ORNL), and the Gridded

Population of the World (GPW) dataset available from

the Center for International Earth Science Information

Network (CIESIN) group at Columbia University.

Case studies evaluate population data across the globe,

specifically, the metropolitan areas of Washington DC,

USA, Los-Angeles, USA, and Houston, USA, and

London, UK, as well as the country of Iran. The

geospatial metrics confirm that the two population

datasets have significant differences, especially in the

context of their utility for disaster readiness and

mitigation. While this paper primarily focuses on grid

based population datasets and disaster management

applications, the sets of metrics developed here can be

generalized to other geospatial datasets and applica-

tions. Future research needs to develop metrics for

geospatial and temporal risks and associated uncer-

tainties in the context of disaster management.
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Introduction

Accurate estimates of the ‘‘population at risk’’ at high

spatial resolutions are important for disaster prepared-

ness, consequence management as well as relief and

rescue operations. While grid-based, high-resolution,

global population models have widespread use in

disaster management, (e.g., Garb et al. 2007; NRC

2007; Rabelo et al. 2006; Dilley et al. 2005), one

drawback that limits the utility of such models and

corresponding datasets as aids to decision support is the

lack of formal approaches for error or uncertainty
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quantification. Quantitative assessments of population

uncertainties are important to understand and plan for

natural or man-made disasters, for example in the

context of resource allocations during readiness

efforts, as well as intelligent consequence manage-

ment. This article takes a first step in the direction of

formal uncertainty quantification by developing a set

of tools to evaluate the utility of high-resolution

population data.

Depending on the spatial interpolation algorithm,

the national/administrative census population can

be represented as continuous gridded population

distribution (or count) datasets. The Geographical

Information and Science Technology (GIST) group at

Oak Ridge National Laboratory (ORNL) reconciles

census population counts obtained at relatively low-

resolution census polygons, with ancillary informa-

tion available at high resolutions, to generate high

resolution LandScan Global dataset. The LandScan

Global 2004 data are available at 30-arc-second

spatial resolutions. The ancillary information includes

land cover, proximity to roads, and topographical

slope obtained from geographical databases and from

remote sensing (Bhaduri et al. 2002; Dobson et al.

2000). The Gridded Population of the World with

Urban-Rural reallocation (GPW3UR) dataset, for

2000, available from the Center for International

Earth Science Information Network (CIESIN) group

at Columbia University, relocates the population

numbers by distribution within administrative bound-

aries based on urban–rural extends. The urban–rural

extend information is generated by a variety of input

data that include census data, online web sources and

National Imagery and Mapping Agency (NIMA)

database of populated places (Deichmann et al.

2001). The GPW3UR data are also available at 30-

arc-second resolutions. Other population datasets

from CIESIN include GPW2 and GPW3, which

employ areal interpolation to reconcile the population

numbers for 1995 and 2000 respectively. The United

Nations Environmental Program (UNEP) employs an

accessibility potential interpolation to generate grid-

based population of the world dataset for 1990

(Deichmann 1996). This article focuses on comparing

the LandScan Global 2004 and the GPW3UR 2000

datasets. The primary motivation of this research was

to get an answer to the following question: If the most

recently updated versions of the two most widely used

high-resolution population databases, LandScan

Global and GPW3UR, were utilized for disaster

preparedness and emergency management efforts,

would the differences be quantifiable, and if so, would

these differences be significant? The population

datasets, both of which represent estimates of the true

population, were not compared with ground truth, but

with each other. The datasets were of identical spatial

resolutions, specifically 30-arc-seconds, hence a spa-

tial alignment was not necessary. Since the purpose

was to compare the best available datasets at the time

of study, and since comparing with ground truth was

not the goal, temporal alignment was not deemed

necessary.

Traditional formulations in statistics (Draper and

Smith 1998) or geographic information science

(Fotheringham et al. 2004; Ripley 2004; O’Sullivan

and Unwin 2003; Fotheringham et al. 2000; Chiles

and Delfiner 1999; Cressie 1993) can be leveraged for

this purpose even though they may not be adequate.

Previous studies by Ganguly et al. (2005) have

proposed a bottom-up approach for uncertainty

quantification, which can combine input- and

model-driven (based on individual operation) uncer-

tainties through ensemble simulation approaches and

process-based validation. However translating the

theory to massive volumes of data and complex

processes encountered in the real-world is a signif-

icant challenge.

Geo-referenced metrics that can effectively quan-

tify the utility of high-resolution, grid-based

population datasets for disaster management do not

exist in the literature. In this paper, we investigate the

applicability of three sets of metrics, adopted or

customized from geo-statistics, applied meteorology

and signal processing. These interdisciplinary metrics

were then applied to compare the grid-based popu-

lation datasets. The metrics quantify the difference

structures, as well as properties like spatial correla-

tions, and certain features related to exceedence of

prescribed population thresholds.

The result of our study indicates that relatively

smaller and sharper population clusters characterize

the LandScan datasets while GPW3UR datasets

exhibit relatively diffuse spatial population clusters.

In addition, our results demonstrate that in a majority

of cases LandScan and GPW3UR datasets rarely

agree on the geospatial placement of high population

values. These results and significance are elaborated

in the following sections.
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Data and metrics

Data

The LandScan Global dataset for the year 2004 was

obtained from the ORNL. The GPW3UR (GRUMP

alpha dataset) for the year 2000 was downloaded from

CIESIN group website at Columbia University

(http://sedac.ciesin.org/gpw/global.jsp—Verified July

21, 2007). The GPW3UR data downloaded as ArcInfo

Interchange file (.eoo format) was converted to a pro-

ject standard ESRI grid file. ESRI data on world

countries was also used in the study region analysis. A

straightforward computation of the geospatial metrics

described in this paper requires datasets with identical

spatial resolutions. If two datasets with different spatial

resolutions need to be compared, they must be brought

to identical resolutions through spatial aggregation or

disaggregation prior to the analysis. Since both the

LandScan and GPS3UR datasets have a 30-arc-second

spatial resolution, aggregation or disaggregation was

not necessary. In general, while some of the metrics

described in this paper may be modified for evaluating

population datasets with disparate spatial resolutions,

caution is strongly advised, especially when account-

ing for scale effects.

Metrics

Metrics for aggregate and spatially distributed

difference

The first set of metrics, collectively called ‘‘differ-

ence measures’’, is well suited for detailed difference

analysis. This analysis is well suited for detailed

analysis of the difference among geospatial datasets

at spatially distributed and aggregate scales. These

include spatially aggregated measures like normal-

ized mean squared difference (normalized with the

product of the standard deviations of the datasets),

fractional area coverage (or the total area of the grids

with population above pre-defined threshold values)

and grid-based difference measures, with or without

transformations like the natural logarithm. These

metrics are displayed using traditional error analysis

tools. Spatial plots were also developed to visualize

the goodness of fit in space, and whether there were

any obvious relatively large-scale spatial errors.

Metrics for spatial dependence structures

The second set of metrics comprises spatial auto- and

cross-correlation measures as functions of spatial

lags. The spatial cross-correlation metrics can also be

interpreted as ‘‘spatially aware’’ measures of differ-

ence. The spatial correlations in each direction are

computed by extending the traditional approaches for

calculating autocorrelations and correlations used for

time series analysis (Box et al. 1994; Mills 1991), in

the context of spatial data. For two spatially distrib-

uted variables X and Y, which are available in spatial

grids (similar to the ‘‘lattice’’ data of Cressie 1993),

the spatial dependence structure between the two

variables, as a function of spatial ‘‘lags’’ (distances

measured as multiples of grid spacing) in each

direction is studied by measuring the spatial linear

correlation (Pearson product-moment sample corre-

lation) measure, as in Eq. 1.

q¼
XN

i¼1

XN

j¼1

½ðXði;jÞ�lxÞ�(Yði;jÞ�ly)]
�
fN2�½rx�ry�g

ð1Þ

where q represents the spatial correlation value.

X(i, j) and Y(i, j) represent the two spatially distributed

variables at pixel location (i, j).

lx and ly represent the mean values associated

with the spatially distributed variables X and Y,

respectively.

rx and ry represent the standard deviation values

associated with the spatially distributed variables X

and Y, respectively.

Equation 1 is utilized to provide estimates of

autocorrelation and cross-correlation in space at

spatial lag zero, or in the ‘‘zeroth’’ direction (i.e.,

exact superposition). The autocorrelation can be

estimated by making the comparison variable the

same as the base variable, while the cross-correlation

can be obtained by choosing two different variables.

The spatial (auto- or cross) correlations can be

calculated as a function of spatial lag and direction

by selecting all pairs of points that are equidistant and

in the same direction from each other. Thus, adjacent

pairs of cells result from the eight compass directions

(N, S, E, W and NE, NW, SE, SW). The correlation

values can be plotted according to the relative

position of the pairs in space and can help identify,

among other features, clusters or directionality in the
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linear spatial dependence. If the number of samples is

identical, a visual estimate of the relative correlations

at multiple spatial lags does not require the normal-

ization by the square of the number of samples.

Metrics for geospatial comparison based

on exceedence thresholds

The third set of metrics is designed to measure the

effectiveness of geospatial data in terms of their end-

use (Murphy 1993), specifically the use of population

data for disaster management. These metrics combine

and refine the concepts of ‘‘equitable threat scores’’

and other skill scores used to rank meteorological or

climate predictions (Ganguly and Bras 2003).

Consider the two spatially distributed variables, X

and Y. X, the base variable, would be used as the base

to calculate threshold range, which is typically 75th

and 95th percentiles of X. At each threshold within

this range, the X and Y variables are examined on a

pixel-by-pixel basis, ignoring spatial orientation.

Each pixel in X and Y are compared to the threshold

and scored accordingly. When the base variable and

the comparison variable both exceed the threshold,

the occurrence is termed a ‘‘Hit’’, but when both do

not exceed the threshold, the occurrence is called a

‘‘Correct Negative’’. If the base variable exceeds the

threshold but the comparison variable does not, the

occurrence is a ‘‘Miss’’. If the comparison variable

exceeds the threshold but the base variable does not,

the occurrence is a ‘‘False Alarm’’ (Stanski et al.

1989). These metrics rely on quantities analogous to

the probability of detection, false alarm ratio and the

probability of false detection and are explained as

below:

1. Proportion Correct (PC) = [Hits + Correct nega-

tives]/Total

2. Frequency Bias Index (FBI) = (Hits + False

Alarms)/(Hits + Misses)

3. Probability of Detection (POD) = Hits/

(Hits + Misses)

4. False Alarm Ratio (FAR) = False alarms/(Hits +

False alarms)

5. Probability of False Detection (POFD) = False

alarms/(Correct Negatives + False alarms)

6. Threat score = Hits/(Hits + Misses + False

alarms)

7. Equitable Threat Score (ETS) = (Hits –

Chance)/(Hits + Misses + False alarms –

Chance)

8. Chance = (Hits + Misses) (Hits + False alarms)/

Total

These metrics are refined such that they provide

measures for evaluating multiple geospatial datasets

rather than measures for evaluating prediction skills

or signal strengths. The receiver operating character-

istic (ROC) curve is used to visualize the relationship

between the false alarm rate and the hit rate. This

metric is used to describe the underlying associations

between the exceeding of the threshold and the

deficiency to meet the threshold.

A number of other geospatial comparative analysis

metrics were developed to determine the underlying

relationships the base and the comparison dataset (Y).

The geospatial comparative metrics are described in

Table 1.

Results and discussions

The geospatial metrics described earlier were used to

compare the LandScan and GPW3UR datasets in

specific areas of the following case study regions:

1. Los Angeles, California, USA

2. Washington DC, USA

3. Houston, Texas, USA

4. London, UK

5. Iran

The case study regions were selected based on the

following considerations: (a) Primary focus on data-

rich, urban and densely populated regions in the USA,

resulting in the choice of three of the largest US

metropolitan areas, but with wide geographical dis-

parity to avoid undue generalizations; (b) Secondary

focus on similar data-rich, urban and highly-populated

environments in a non-US country, resulting in the

choice of a city in Europe (UK); (c) Tertiary focus on

data-poor regions of the globe, especially in develop-

ing countries over large areas, resulting in the choice of

the entire country of Iran. In addition to the above

considerations, the choice of the case study regions

were also based on anticipated high risks due to man-

made hazards (e.g., Washington, Los Angeles or

London), natural hazards (e.g., Houston) or terrorism

GeoJournal

123



and war (Iran). The choice of the specific case study

regions should still be viewed as exemplary rather than

exhaustive.

The metrics described in this article were tested on

all five case study regions. However, this paper

presents a summary of the key results through selected

figures and discussions. Detailed descriptions and

discussions are available in Sabesan et al. (2006).

Difference measures

The absolute difference between LandScan and

GPW3UR datasets for these regions are shown in

Fig. 1. A visual inspection of the spatial distribution of

the difference values indicate significant differences in

population numbers between the datasets in regions of

high population, especially in downtown Los Angeles,

Washington DC and Houston, USA as well as in

London, UK. The histograms of the raw dataset

indicate differences in the distribution of the popula-

tion counts in-terms of high and low values, LandScan

having higher population differences compared with

the GPW3UR datasets. Figure 2a shows the histogram

plots for the Washington DC region. Plots of the raw

and transformed difference values led to interesting

insights. Figure 2b shows that the absolute differences

between LandScan and GPW3UR values tend to lie on

a straight line with a 45� slope. The slope indicates that

for larger population values the differences tend to get

magnified, with the LandScan values being mostly

higher than the GPW3UR values.

Spatial correlations

The typical spatial auto and cross correlation

structures of LandScan and GPW3UR datasets

indicate that the LandScan datasets are characterized

by sharper population clusters in the dataset than the

GPW3UR dataset. The spatial auto-correlations of

the LandScan datasets for Houston are seen in

Fig. 3a. The figure indicates that the correlation of

population is high for smaller lags but decays rather

sharply with distance and direction. These plots

indicate the presence of small and sharper clusters in

the LandScan dataset. The spatial auto-correlations

of the GPW3UR dataset for Houston are shown in

Fig. 3b. The plot indicates that the correlation is

high at smaller lags and also indicates a smoother

decline as the lag increases. This implies stronger

direction orientation. These plots indicate the pres-

ence of more diffuse clusters than the LandScan

datasets. The spatial cross-correlations of LandScan

and GPW3UR datasets for Houston are shown in

Fig. 3c. The figure indicates that the correlation is

high at smaller lags and also indicates a smoother

decline as the lag increases. The cross-correlation in

the East/West direction indicates an increasing trend

beyond the 2nd and 6th lag. The cross-correlation

values indicate differences in the datasets. Overall, it

can be inferred that the spatial cross-correlation

structures between LandScan and GPW3UR datasets

indicate positive correlations within the datasets at

shorter lags.

Table 1 Geospatial

comparison metrics

L: LandScan; G: GPW; T:

Threshold; [: Greater than;

\: Less than; \: Intersection

(set theoretic), equivalent to

‘‘AND’’, ^; [: Union (set

theoretic), equivalent to

‘‘OR’’, v

Geospatial comparison metric

Mutual exceedence L [ T \ G [ T

Mutual non-exceedence L \ T \ G \ T

Base exceedence comparison

non-exceedence

L [ T \ G \ T

Comparison exceedence base

non-exceedence

L \ T \ G [ T

Mutual exceedence threat score (L [ T \ G [ T)/(L [ T [ G [ T)

Mutual non-exceedence threat score (L \ T \ G \ T)/(L \ T [ G \ T)

Base exceedence comparison

non-exceedence threat score

(L [ T \ G \ T)/(L [ T [ G \ T)

Comparison exceedence base

non-exceedence threat score

(L \ T \ G [ T)/(L \ T [ G [ T)

Bias score (G [ T)/(L [ T)
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Geospatial comparative metrics

The geospatial comparative metrics were used to

show the usefulness of the datasets in case of a

natural or man-made disaster, security threat scenar-

ios, or impact analysis. For Houston, the accuracy

value (Fig. 4a) decreases to around 70% between

approximate threshold values of 200 and 500. The

accuracy value drops to a minimum of 65% for

thresholds between 600 and 800. Beyond this

threshold, the accuracy values increase with increase

in threshold, reaching over 90% for population counts

beyond 2,000 people. This measure shows the portion

of predictions that were the same (either both above

the threshold or both below the threshold) increases

as the threshold increased. It can thus be inferred that

as the threshold increased the ability of GPW3UR

and LandScan datasets to predict population

Fig. 1 Absolute difference values between GPW3UR and LandScan datasets for the five study regions
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increases. For the Los Angeles region, when Land-

Scan dataset is used as the base, the hit rate (Fig. 4b)

are relatively high at threshold values around 100 and

starts to decline henceforth. Beyond a threshold

of 200 people, the POD values tend to be around

0–30%. It is evident that as the population increases,

the POD values decreases, indicating increases in the

number of ‘‘misses’’. At higher thresholds, the

LandScan datasets exceeds the specified threshold,

but the GPW3UR dataset does not. At thresholds

between 750 and 800, the hit rate is close to zero,

indicating that the datasets do not agree on population

numbers in this range. The FAR (Fig. 4c) values, for

Los Angeles, increase to a maximum of around 0.7

until a threshold of 200 people. The values hover

between 0.3 and 0.6 beyond the 200 people. The FAR

value for thresholds close to zero approximates 0.3.

This indicates that in these population ranges, the

GPW3UR exceed the threshold more (around 30%),

in comparison to the LandScan datasets.

The threat score values, which ranks the ability of

the comparison variable to predict the same popula-

tions as the base variable is shown in Fig. 4d for the

Washington DC region. The threat score values

decrease with the increase in population. The plot

indicates that for lower threshold values (0–200),

around 70–80% of GPW3UR population estimates

were similarly predicted as the LandScan datasets.

The threat score values reached a minimum of 20%

for threshold values beyond 1,500. It can thus be

inferred that at higher populations, the ability of

GPW3UR datasets to predict populations similar to

LandScan datasets decrease. The mutual exceedence

threat score measuring the ability of both datasets to

make predictions above the specified threshold is

given in Fig. 4e for the Washington DC region. The

plot indicates that for lower threshold values, both

LandScan and GPW3UR datasets make more predic-

tions above the threshold. This value decreases to

reach a minimum of 13% for population ranges

Fig. 2 (a) Histogram plots

of LandScan and GPW3UR

data for Washington DC

region (b) Different values

plotted against the actual

LandScan values for the

Los Angeles region
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between 200 and 250. The mutual non-exceedence

plot, for Iran, (Fig. 4f) indicates that as the threshold

increases the number of occurrences when both

LandScan and GPW3UR datasets do not exceed the

specific threshold fluctuate but continues to increase.

This confirms our understanding that the LandScan

and GPW3UR values do not agree in regions of high

population counts.

The Receiver Operating Characteristic (ROC)

curve for London (Fig. 4g) shows that the number

of hits that occur throughout the range of thresholds

is greater than number of false alarms occurring. This

implies that whenever the GPW3UR dataset predicts

a population exceeding the threshold the LandScan

Global dataset will also predict the same exceeding of

the threshold.

The results presented here demonstrate the inher-

ent differences among the two population datasets,

especially when the population values in one exceed

high thresholds. Overall, the LandScan datasets

exhibit sharper clusters than the GPW3UR datasets,

which in turn have a more diffuse spatial lag

structure. The choice of a particular dataset over

another may in general depend on the application,

even though LandScan datasets do seem to capture

greater geospatial variability, which if accurate can

be a critical factor for utility in disaster management

efforts. In the absence of absolute validation metrics

based on ground truths, the facts that the higher

variability is caused by additional spatially distrib-

uted input variables may be one important

consideration for the choice of LandScan over

GPW3UR is most disaster management efforts

worldwide.

Conclusions and future work

To our knowledge, this is a first attempt to rigorously

apply statistical metrics to evaluate high-resolution

global-scale population datasets. The two datasets

compared, specifically LandScan and GPW3UR,

represent the best available population-at-risk esti-

mates currently available to the community. Thus, a

direct comparison of the most recent versions of the

two datasets is an evaluation of the difference that

may result when they are used for disaster prepared-

ness or consequence management. The case studies

with the various types of metrics yield several

interesting insights regarding the difference of the

two population datasets, which have been described

earlier.

One important high-level insight is that the Land-

Scan datasets tend to be characterized by relatively

smaller and sharper population clusters, while the

Fig. 3 (a) Spatial auto-correlation of LandScan dataset (b)

Spatial auto-correlation of GPW3UR dataset (c) Spatial cross-

correlation of LandScan and GPW3UR datasets for the

Houston region
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GPW3UR datasets exhibit relatively diffuse spatial

population clusters. The fact that LandScan utilizes a

more sophisticated and ancillary data-dictated spatial

re-distribution algorithm may account for the sharp-

ness of clusters. Generic features such as the tendency

to form sharper or more diffuse clusters cannot be

taken as a proxy for a measure of accuracy, especially

when ground truth is not available for comparison.

However, there is evidence from the literature to

indicate that populate exhibits clustering tendencies

(Small 2004). The ability to faithfully represent

observed spatial clusters is important for decision-

makers, as the properties of population clusters may

dictate the geographic allocation of resources, both for

enhanced preparedness and for effective consequence

management. Future experiments may be designed to

Fig. 4 (a) Percent correct

score for Houston (b) Hit

rate score for Los Angeles

(c) False alarm ratio score

for Los Angeles (d) Threat

score values for

Washington DC (e) Mutual

exceedence threat score for

Washington DC (f) Mutual

non-exceedence plot for

Iran (g) ROC plot for

London
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compare the sharpness of clusters obtained from

estimated population datasets with the corresponding

clusters obtained from imagery, or even ground truth

if available.

A second intriguing high-level insight is that our

results suggest that in a majority of cases LandScan

and GPW3UR datasets rarely agree on the geospatial

placement of high population values. Once again,

notwithstanding the sophistication or data-richness of

LandScan’s redistribution algorithm, the lack of

ground truth precludes any generic statement about

relative accuracy. However, the placement of larger

population counts, or the precise location of densely

populated regions, is a key determinant of emergency

preparedness and response strategies. In resource-

constrained environments, additional resources must

be positioned in areas with high population to save as

many human lives as possible. Thus, future research-

ers may need to focus on this important aspect and

study the correspondence of the dense population

regions estimated by the two datasets with imagery or

ground truth if available.

Validation of high-resolution population at global

scales remains a challenging problem owing to

limited availability of ground truth as well as the

difficulty to measure the skills in the estimates.

Uncertainties creep in the estimates due to the errors

in the inputs, resulting in input-dependent uncer-

tainty, and the subjective nature of the estimation or

modeling process, causing process-dependent uncer-

tainty. These issues have been described in Ganguly

et al. (2005). A first step to quantification of the

uncertainties in population datasets, with a particular

emphasis on the utility of such datasets for hazard

management, is the development of rigorous metrics

for comparative evaluation of the datasets. This paper

implements three types of metrics, based on spatially

aggregate and distributed difference, spatial depen-

dence structures, and exceedence of population

thresholds. The procedures and results suggest the

tremendous challenges involved in such formulations,

especially when one moves from conceptual and

theoretical frameworks to real-world applications.

Indeed, the challenges are caused by the nature of the

problem and the limitations of the state-of-the-art

methodologies. However, based on our results, we

believe that the skill assessment problems are poten-

tially solvable, or at least significant improvements

are possible, based on recent developments in

geographical information science and spatial statisti-

cal tools. This paper needs to be viewed as a first in a

potentially long line of research in the area. We

believe this is a critical area for future research, given

the importance of the population estimation, and

associated uncertainty quantification, problem in the

context of hazard readiness and mitigation (NRC

2007).
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